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Thi s investigation aims at the elas tos tatic field near the edges

(tips) of a plane crack of finite width in an all-around infinite body , which —

at infini ty — is subj ec ted to a state of simple shear parallel to the crack

faces. The analysis is carried out within the fully nonlinear equilibrium

theory of homogeneous and isotropic , incompressible elastic solids .

Further , the particular constitutive law employed he re gives rise to a

loss of ellipticity of the gove rning displacement equation of equilibr ium

in the presence of sufficiently seve re anti-plane shear deformations.

The study repor ted in this pape r is a symptotic in the sense that

the ac tual crack is replaced by a semi-infinite one , while the far field is

required to match the elastos tatic f ield predicted near the crack tips by

the linearized theory for a crack of finite width. The ensuing global

boundary-value problem thus characte rizes the local state of affairs in

the vicinity of a crack-tip, provide d the amount of shear applied at

infinity is suitably small.

*The results communicated in this pape r we re obtained in the course of
an investigation supported by Contract N000 14-75-C-0l96 with the Office

• of Naval Research in Washington , D. C.
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An explicit exact solution to this problem, which is deduced with

the aid of the hodograph me thod, exhibits finite shear stresses at the tips

of the crack , but involves two symmetr ically located li nes of displacement-

gradient and stress discontinuity issuing from each crack-tip.

Introduction

In a numbe r of investigat ion s conducted dur ing the pas t few years

we have explored two distinct type s of inherently nonlinear singular

problems in finite elastostatics. The first of these categorie s pertains

to geometrically induced point or line singularities , such as those arising

in conne ction with crack and punch problems , for which the linearized

theory of eals ticity — in conflict with it s underlying approximative as-

sumptions — predicts locally unbounded deformation gradients. The second

category, which has no counterpart in linear elastostatics , concerns the

emer gence of line s o r surface s ac ross which the deformation gr adient s

suffer fini te jump discontinuities. This kind of singular behavior becomes

possible only if the elastic mate rial is such as to admit a fail ur e of el-

li pticity in the corresponding displacement equations of equilibrium at

sufficiently severe deformations.

The result s obtained in these investigat ions aresummarized in a

comprehensive survey [ i ] ,  which also contains references to the related

background literature ’. The present paper extends , and combine s st rands

from, both strings of studies allude d to above . It deals with the elasto -

s tat ic field near the tip of a crack under conditions of anti-plane shear in

a constitutive setting within the fully nonlinear equilibrium theory that

‘In this paper we shall cite explicitly only previous work that is of im-
mediate relevance to our current purpose .
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leads to a loss of elli pticity and the concomitant appearance of lines of

defo rmation-gradient discontinuity (“elastos tatic shocks ”) in the vicinity

of the crack-tips.

The particular problem treated here is suggested by and complements

an asymptotic study reported in [z] . We consider an all-around infinite —

homogeneous and isotropic — incompressible elastic body with a plane

crack of con stant width and infinite length . At infinity the body is sub-

jected to a state of simple shear , paralle l to the face s of the crack. In

[z] the deformations and stresses ensuing near the tips (edges) of the

crack were analyzed for a class of such mater ials whose elas tic potential

(strain-energy density) is completely determined by the shear-stress

response to a simple-shear defo rmation . Moreove r , the analysis carried

out in [2] was confined to circumstances in which the induced shear stress

is a steadily increasing function of the amount of simple shear applied.

In this instance the displacement equations of equilibrium are found to be

ellipt ic at all field points and at every solution corresponding to anti-plane

shear. In contrast , ellipticity is lost at severe enough anti-plane she ar

defo rmations if the re sponse curve in simple she ar unde rgoes at least

one reve rsal in slope .

The case in which the response curve in simple shear has a

positive slope throughout but rises monotonically to a finite shear stress —

as the amount of shear grows beyond bounds — thu s signals an impending

breakdown of ellipticity , which would occur if the stress were to increase

steadily to a maximum value at a finite amount of shear and thereafte r

de clined monotonically . This troublesome transition case is still fully

discussed in [2]  with the aid of the hodograph method and on the basis of

an asymptotic scheme in which the crack of finite width is rep laced by one

~~~~ 
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of semi-infinite width, while the far  field is required to match the elasto-

static field near the crack-ti p predic ted by the solution to the original

problem according to the linear theory .

The result s deduced in [z]  for the limi ting elliptic case described

above , though of unlimited smoothness in the interior of the body , display

cer tain fe ature s that suggest the emergence of discontinuities in the

deformation gradients once ellipticity is lost. In order to explore thi s

eventuality by means of a pilot example we presuppose he re a specific

response curve in simple shear that rises linearly to a maximum shear

stress and then declines s teadily as the amount of shear increases. The

special constitut ive ass umption thus introduced enables us to es tablish

on the basis of the hodograph method an explicit exact solution to the

crack problem under pre sent consideration. The solution thus obtained

involves two line s of displacement-gradient and stress discontinuity that

are symmetrically locate d with respect to the axis of the crack , issue

f rom the crack-tip, and terminate in the interior of the body.

1. Preliminaries. Finite anti-plane shear for incompressible elastic

solids. Formulation of crack problem.

In this section we cite from [2] certain prerequisite s needed he re .

Suppose the inte r ior of a body occupies an open region ~ in an undeformed

configuration and consider a defo rmation

for all xE6~ (1.1)
1

that maps R onto its deformation image R~ . Here x is the position

vector of a material point in R , ~~x) its position vecto r in R~ , and u(x)

$
‘Boldface letters are used to denote ve ctors or tensors. 
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it s displacement vector. We assume the m apping (1. 1) to be suitably

smooth and invertible . Let

F = V Z = i + V u o~ ~ , (1. 2) 1

so that F(x) is the defo rmation-gradient tensor at x. For an incompres-

sible medium the defo rmation must be locally volume preserving and thus

J = d e t F= 1  on ~ (1. 3)

The left deformation tensor associated with (1. 1) is given by

G F F T (1. 4)2

and has the fundamental scalar invariants

11=tr G , I2 =~~[tr G) 2
~~tr(G 2)1 , 13= de tG=J 2

= 1 . (1.5)

Next , let T be the actual (Cauchy) stress tensor field on R * and

a the corresponding nominal (Piol a) stress field on ~L , whence

r = c Y FT a = T ( FT )~~ . ( l . 6 )~

The balance of linear momentum, in the absence of body forces , leads to

the equilibriuin equation s

div T = O  on or div~~~ O on R . (1.7)

Suppose further the incompressible medium at hand is a homo-

geneous, isotropic, elastic solid that possesses a strain-energy density

W per unit undeformed volume. In this instance W = W(I~ , Iz ) and the

‘We write 1 for the idem-tensor.
2The superscript T indicate s transposition.

• A is a nonsingular tensor , K ’ stands for its inverse.

• . - . -.~...—‘——-.•. .-. . ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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appropriate constitutive law take s the equivalent alternative fo rms:

(1 .8)

a z E iF + .~~!(I ,i_ c )F ] p(FT ) _ 1  
, (1.9)

where p is the arbitrary hydrostatic pressure required to accommodate

the kinematical constraint (1.3).  The stress-deformation relation (1.8)

assures the symmetry of r , but a is in general not symmetric.

If S is a surface in ~ and S~ its deformation image in

one has

•T•n~~~O on S~ if and only if a n = O  on S , (1. 10)

where 11 and ar e the respec tive unit normal vectors of S and S~ .

Thus , in particular , a portion of the boundary of is free of actual

tractions provided the nominal traction vanishes on its antecedent within

the boundary ~~~~. Furthe r the actual traction t = T n* is found to be

continuou s across S~ if and only if the nominal traction is

continuous across S.

With a view toward the crack problem that constitutes our obj ective

we now assume that R is the exte r ior of a plane infin ite strip of width

Zc. Further , we introduce rectangular cartesian coordinates (x 1, x2,x3 )

in such a way that this strip, which represents the crack , lie s in the plane

x2= 0, the x.3-axis being parallel to the edge s of the crack and the origin

midway between the edges. Figure 1 shows the cross-section ~ of R

in the plane x3= 0. Evidently, the plane domain ~ is the exterior of the

line segment x2= 0, -c �x t � c in the (x1. Xa)_ p l5fle . We confine our

• . 

-~~~~~~~~~ -—~~~~~~ —--- ,. 
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attention now to the case in which the body is subjected at infinity

to a simple shear parallel to the crack faces ’. The displacement

components u1 are thu s required to satisfy2

u =o (1) , u3=kx 2+o( 1) as xx - .c~ (-~x,<x3<w) , (1. 11)

in which the positive constant k is the amount of the applied she ar .

Moreover , the deformed faces of the crack are taken to remain free of

actual tractions. In view of (1. 10), this assumption yields the boundary

conditions

a
~2(x 11 O* ,x3 ) = 0  ( -c<x 1 cz c, -a< x3< a )  (1. 12)

• for the components of the nominal stress field. If R is understood

to be the particular domain just defined, the crack problem to be con-

sidered accordingly consists in finding a deformation (1. 1) obeying the

incompressibility condition (1 .3), as well as a hydrostatic pressu re field,

such that the displacements satisfy (1. 11), while the associated nominal

stress field (1 .9)  satisfie s the equilibrium equation (1.7) and meets the

boundary conditions (1. 12).

At this stage we restrict ourselves to the class of incompressible

elastic solids for which W is independent of the second defo rm ation

invariant and set

W = W ( I 1) for all I,�3 , W ( 3 ) = 0  . ( 1.13)~

• ‘This loading case is known as “Mode III” in the terminology of fracture
mechanics.

2Latin and Greek subscripts have the ranges (1, 2, 3) and (1, Z),respectively.
Summation over repe ated subsc ripts is taken for granted.
3 .It is easily seen from (1.4), (1. 5) that I~= 3 at the undeformed state andthat othe rwise I~>3.

• . — • .-• -. ..—. . ,•. •.—•‘_•- ‘-__•~~~~•.•,.~.- . . .~ — .!~~ ~~~~~~
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Such a solid has a shear modulus at infinitesimal deformations given by

~ =2W ’(3) ( 1 14) 1

and conforms to the Baker-Ericksen inequality, provided

W ’(11)> 0  for I~ >3  . (1. 15)

In particular , for a NeoHookean material,

W(I 1)=~~(I1-3) . (1.16)

For materials governed by the strain-energy density (1. 13) the

foregoing crack problem is consistent with the assumption that the ensuing

defo rmation throughout ~ is one of anti-plane shear paralle l to the face s

of the crack:

u~=O , u
3= u (x,,x2) on R . (1.17)

Indeed, as shown in [2], (1. 17) enables one to reduce the original three-

dimensional problem to the following subsidiary two-dimensional boundary

value problem for the unknown out-of-plane displacement u on the cross-

sectional domain £~:

[W k(I
l)u c~]~~~~0 on ~ (1.18)2

with

Ii= 3+ 1V u1 2 {V u I 2=u~~u~~ ; (1.19)

~1 . I . .Here and in what follows W 
~
1
~ 

stands for the derivative of W with
respe ct to its argument I~ .
2Subscripts pre ceded by a comma indicate partial differentiation with respect
to the corresponding material carte sian coordinate .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  __ ______



u(x 1, x2 ) = k x2+o( 1) as x x- ’~~ , (1.20)

u 2(x 1, 0± ) 0  (-c<x 1<c) . (1.21)

The hydro static pressure p = 2W”(I1) on ~ in the present instance and

(1. 17), (1. 13) together with (1.8), (1.9) yield the stress-displacement

relations

T = r  =~~ =a = Z W ’(I )u , (1.22)3~ o~3 3c~ c~3 1 ,~

T 33= Z W ’(11) t V u I 2 
, (1.23)

with I~ supplied by (1. 19).

We now specify the smoothness demanded of the solution u to the

boundary-value problem characterized by (1. 18), (1. 19), (1.20),  (1. 21).

In this connection we suppose that W has a continuous first derivative

and at least a piecewise continuous second derivat ive on its interval of

definition [3, w). Further, we restrict u to be continuous and to possess

• pie cewise continuous fi rst and second partial derivatives on ~ ; in addition ,

u is to be bounde d on eve ry finite sub-domain of L Thus , in par ticula r ,

u must remain bounded within any circle of finite radius centered at

eithe r crack-tip. Next , the limits Vu(x 1, 0±) are to exist and be continuous

fo r - c<x 1< c. Observe that the pre ceding smoothness restrictions allow

for the possibility of finite jump discontinuities in ~u — and hence also in the

stresses T3i 
— across curve s in ~~~. If I is such a curve, however, we

stipulate that W ’(11) 8u/8n be continuous across I, provided n is the

unit normal vecto r of a~ and au / a n = V u.n. Let s=an , so that s is

the nominal traction vecto r along I. One draws from (1.22),  (1 .23)  that

I

- ..~~ ..•- .- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~ 
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s = 0  , s3~~s=2W
’(I 1)~~ on . (1.24)

The foregoing continuity condition therefore assures the continuity of

the Piola tractions across the cylindrical surface whose trace upon ~
is a . Consequently’, the Cauchy tractions are continuous across the

deformation image of this surface . The continuity of both the nominal

and the actual tr actions , in turn , is a ne cessary equilibrium requirement.

If the boundary conditions (1.21) are deleted and ~ is momentarily

taken to be the entire (x1,x2)-plane, i.e. in the absence of a crack, the

differential equation (1. 18), subject to the condition (1.20) at infinity,

clearly admits the elementary solution

u(x 1, x2 ) = k x 2 for all (x 1, x2)E~ , (1.25)

which corresponds to an undisturbed homogeneous field of simple shear

of amount k. Also , (1. 22), (1 .23)  now furnish

T 23 = T 32 = T ( k ) = 2W ’(3+k 2)k , T 3~ = T ( k ) k  (0 � k<w)  , (1 .2 6)

while all remaining components of actual stress vanish identically. We

shall henceforth refer to the graph of T(k) (0�k<co ) as the response

curve in simple shear. For the special case of the Neo-Hookean solid,

with the strain-energy density (1. 16), T(k) =~.tk and this response curve

is a straight line. Bearing (1. 13) and ( 1.25) in mind one sees at once that

the response curve in simple shear , in turn , completely determines ~~
strain-energy density for an incompressible elastic solid of the type

under consideration :

‘See the remarks following (1. 10).

I
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W(I,)=ST(k)dk (3� 11<co) . (1.27)

Finally, we observe in connection with (1. 26) that the Baker- Ericksen

inequality (1. 15) is equivalent to the obvious physical requi rement that

the “modulus of shear ” 2W ’(3+k 2) be positive at all values of k.

When (1. 15) is in force , one confirms readily that the quasilinear

second-orde r partial differential equation (1. 18) is elliptic at a solution

u and at a point (x 1, x2) if and only if

W ’( 3 + k 2 ) + Z k 2W ”( 3 + k 2 )>. 0 , k =  IVu (x 1 x2 ) l  . (1 .28)

On the othe r hand, as is cle ar from (1. 26),  this inequality is satisfied

if and only if T ‘(k)> 0, so that the response curve in simp~ shear has

a positive slope at an amount of shear equal to the magnitude of the local

displacement gradient Vu(x 1, x2 ). It follows that (1. 18) cannot admit a

loss of ellipticity if the response curve in simp le ,hear represents a

strictly increasing function ’.

We conclude this section with two examples of incompressible

elastic solids within the class of such solids subsumed in (1. 13). The

f i rs t  of these concerns the subclass of “power-law materials” introduced

in [2] ,  which is governed by the elastic potential

(3 �I i<~~~
) , (1.29)

where i~ , n , and b are positive material constants. In view of (1 .26) ,

• 
1If such is the case , we shall — in the present context — call the elastic
solid an “elliptic material ”. 

•- . 
_
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the response curve in simple shear here is characterized by

• 
T(k)=~11

1+
~~
k2 ] k  (0�k<x) , (1.30)

~t being the shear modulus at infinitesimal deformations. Figure 2

illustrates the response in shear for various values of the “hardening

parameter ” n. A power-law material hardens or softens in simple shear

according as n> 1 or n< 1. The case n = 1 corresponds to the special

case of the Neo-Hooke an solid . For n � 1/2 , ¶ (k )  is monotone strictly

increasing; furthe r , if n > 1/ Z , r (k) -.co as k-.w , while T(k) tends to the

finite “ultimate shear stress ” t /,,/~~~ as k-.w if n = 1/2 . On the othe r

• hand , in the range 0 < n < 1/ 2 , ‘r (k) rises steadily to a mnaximurn at

k k0= Jn/b(l - 2n) and thereafter decreases steadily to zero as k-.~~.

Thus , all solutions of the displacement equation of equilibrium (1. 18)

are bound to be elliptic everywhere when n� 1/2. In contrast, when

n< 1/2 , a solution of (1. 18) that involve s displacement gradients of a

magnitude exceeding k0 at some point entails a local loss of ellipticity.

The transition case n = 1/2 is evidently the limiting elliptic case .

We turn finally to a second , much mo re specialized, ideal incom-

pressible elastic solid that serve s as a basis of the present pilot study .

The elastic potential defining this material is given by

W(I 1) = ~~ (I 1
- 3 )  (3 �I i

�4) 1
~.( 1.3 1)

W(11)= 
_
~~~+ Z~(I,-3)”~ (4�1 1<w) J

in which the positive constant ~i is again the shear modulus at infinitesimal

deformations. The corresponding response in simple shear obeys

• ~~~ — --~•-  . . -

— —- - . —  - --—-—-• - •----•- - ~- - -- -- ---—
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T(k) =~ik (0�k�1) , T(k) =M k ”2 ( 1 � k<x )  . (1.32)

Figure 3 displays the graph associated with (1 .32) .  Note that the response

in the present instance is linear (Neo-Hooke an ) up to a shear of amount

k =  1, whereas T(k) is monotone decreasing for I �k<~~ and T(k) -.0

as k - .x .  Clearly, the location of the peak of the response curve at k =  1

is a matte r of convenience on ly 1 . Equation (1. 18) at present suffers a

• loss of ellipticity a t a  solution u and a point (x 1, x2 ) if Vu(x1,x2)~ >l.

Observe that while the elastic potential (1.29) has continuous derivatives

of all orders , W in ( 1.31) is merely once continuously differen tiable on

its interval of definition [3 , co); the second derivative of this elastic

potential has a finite jump discontinuity at I~ =4 .

2 . The small-scale nonlinear crack problem. Hodograph transformation.

Upon a linearization with respe ct to (VU (, the differential equation

(1. 18) reduces to Laplace ’s equation and (1 .22 ) ,  (1 .23)  pass over into the

stress- displacement relations appropriate to infinitesimal anti-plane

shear defo rmations. The boundary-value problem for u governed by

(1 .18) , (1 .20) ,  (1 .21) unde r such a linearization becomes identical with

that characterizing the analogous crack problem in linear elastostatics.

This linear boundary-value problem, in turn , is mathematically identical

with the one governing the velocity potential of a steady irrotational flow

of an inviscid incompressible fluid past a flat plate of Width Zc at a right

angle of attach .

If (r , ~
) are polar coordinates at the right-hand crack-tip (see

‘The case in which this peak occurs at k= k0 (k 0>0) is reducible to the
$ case k0= 1 by means of an obvious re-scaling.

I. -77~~t ;

L — -• -..
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Figure 1) the asymptotic behavior , as r-.0, of the displacement u and of

the shear stresses ¶
3~ belonging to the well-known solution of the linearized

crack problem is given by

k(2cr)~~~
2sin~~ ,

• -1/ 2 . 9 1sin~ •(2.1)

o • — 1/2 9T 32 = j.Lu 2— i~.tkc(2cr) cos

The normal stress T 33 
vanishe s identically according to the linear theory .

For our purposes it is essential to remark that for the Neo-Hookean

elastic potential (1. 16) the non-linear crack problem (1. l8 ) -( l .  21) specializes

exactly (rathe r than merely by linearization) to the linear problem of which

~i is the solution. Further , for the Neo-Hookean material r coincide s3c~
with T

3~~I but T33 now no longer vanishes. In fact , for this special

material one finds from (1. 23) and (2 . 1) that

2 2
i33 = p ( v u (  ~~~~~~~ as r-.0 . (2.2)

According to (2 . 1), the stresses T 3~ — and hence also the correspond-

ing infinitesimal shearing strains — become unbounded as r - 0 .  Consequently

the solution of the crack problem based on linear elastostatics cannot be

valid arbitr arily close to the crack-tips. It is plausible to assume, however ,

that for a small enough amount of shear k at infinity, the asymptotic

‘See , for example , I.N. Sneddon and M. Lowengrub [3], Section 2.6.  Note
that the right member in the first  of (2 . 1) is an exact solution of Laplace ’s
equation that has a vanishing no rmal derivative along r> 0, 9 = ± i~.



-15-

estimates (2 . 1) are realistic within a suitably small circular annulus

centered at the right crack-tip (see Figure 4). On the othe r hand, the

deformations and stresses in the interior of the circular disk surrounded

by this annulus — except possibly at the tip of the crack , where they may

not be defined — are governed by the finite theory and must match the

near field predicted by (2. 1) as the inner boundary of the annulus is

traversed. A magnification of thi s local state of affairs , which in the

• context of plasticity theory 1 is known as “small-scale yielding”, leads

to the following global boundary-value problem for the domain ~ (see

Figure 4) comprising all points exterior to the half- axis -cn<x 1 �0 ,

x2= 0, which may now be regarded as representing a crack of semi-infinite

width. [f (r , 9) are at present polar coordinates at the origin, so that

x,=r c o s 9 , x2= r sin e (O �r < co, -ir �9 < r r ) , (2 .3)

the ensuing “small-scale nonlinear crack problem” consists in finding

a solution of the partial diffe rential equation (1. 18) on ~~~~, subjec t to

the boundary conditions

u 2(x 1,0±)=O (~w<x 1<0) (2.4)

and the matching conditions

u’.-.k(2cr)~
”2sin~~ ,

u 1—~-kc(2cr) 
‘‘
~
2sin -~~ u 2~~kc(2crY

1”2cos .~~ .(2. 5)

as r-’co (-w �9< ,T )
)

$ ‘See Rice [41. 

—,•- - - • - ••-• .— • - -~ 
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Furthe rmo re , the desired solution u is to satisfy relaxed regularity

requirements strictly analogous to those imposed in connection with the

original nonlinear crack problem1.

When refe r red to the dimensionless variable s

5E~,=x~/ck
2 F=r/ck2 , i i= u / c k2 

, (2.6)

the boundar , — val ue problem (1.18), (2 .4), (2 .5 )  assume s the following

• non-dimensional form in which k does not appear explici tly:

[W’(3+ IV~iiI
2)ii ~] ~= O on (2 .7) 2

2~~1’°~~~ ° 
(-co<i1<0) ; (2.8)

2V)’’2sin~~

~i 1 Z~ Y ’~
’2 sin~~ ~~ 2~~(2~ ) ’’2 cos~~ (2 .9)

as r-’co

The foregoing small-scale nonlinear crack problem was solved

in [2] by means of the hodograph method fo r the li mit ing elliptic case

n =  1/2 of a power-law material with the elastic potential given by (1. 29) .

Reve rting to the general class of incompressible elastic materials governed

by W W(11), we me re ly sketch here a formal approach to the problem

• 
. 

based on the hodograph method and refe r to [2] for a detailed exposition

‘See the regularity conditions listed after (1. 23).
2Subsc ripts preceded by a comma are now understood to indicate partial
diffe rentiation with respect to the dimensionless material coordinates i

• and ~ stands for the gradient operato r with the components 8/8k

L _ _ _ _

• 

- ~~~~~~~~~~~~~~~~~~~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  __  ..
~~~-
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of this scheme .

The underlying hodograph transformation is the mapping

for all (iE 1, iE2)E~~ (2. 10)

from the physical (iE1,~~2)-p lane into the hodograph plane spanned by the

rectangular cartesian coordinates 
~~~ ~

, 
~~~~~

) . We shall limit our attention

temporarily to a mate rial satisfying the ellipt icity condit ion I ‘(k)> 0

• (0�k< oo). Further , we take for granted that (2 . 10) is a one-to-one

continuously differentiable mapping of ~ onto it s as yet undeterm ined

image ~ in the hodo gr aph plane . The latter assumption entitle s us to

introduce , in place of ~~~, it s Legendre tran sfo rm fY as a new dependent

variable :

(2. 11)

From (2. 10), (2.11) follow

Ofl A , (2.12)

on ~ . (2.13)

Conditions (2. 8), (2. 9), together with the anticipated unboundedness

of IV~ I as F -”X , suggest that A is the uppe r half-plane ~f 0, with

as Y-”O and vice-versa. Also , if (p, cp) are polar coordinates

in the closure of this half-plane , so that

g 1= p c o s c p , ~2 = p s ” ~~ (0 � p<w , 0 �cp �ii ) , (2.14)

one draws from (2. 10) that

• - — • -~ . • •• -• .• — • . •- -•— - •• “ •

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _  A
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= = I~’ul . (2. 15)

Under the transformations (2. 10), (2.11) the nonlinear boundary-

value problem for ~ on ~ becomes a linear one for t~ on ~~~~, which —

as shown in [2] — admits the exp licit solution

U(~~1,~~2 ) = p P(p)cos cp  ( 0<p < c o, 0 �cp �rr ) , (2. 16)

• where

dt 
2 

~~ dt (0<p<co) . (2.17)1

~
, t 3w ’~~+t ) 

~ 
t T(t)

On setting

• Q(p) = — pP ’(p ) (0<p<co ) , (2. 18)

one infers from (2 . 16), (2 . 12), in view of (2 .3), (2 . 6), and (2. 14), that

— — 2
x1=rcose=P (p)-Q (p)cos cp

x2- r s r n9  = - Q(p)  sin cp coscp (2. 19)

(0<p<co, 0 �cp �-rr )

It can be shown2 that for an elliptic material, equations (2 . 19) are

inver tible: for each i> o and each 8 in the interval [-~ , -~] there exist

unique value s p = p (i , ~) and cp = cpCF, 8), with p > 0 and ~ in [0, ~~

‘The convergence of the improper integral is assured by the ellipticity
conditIon T ’> O on [0 , co).
2A proof of this is sketched in [2] merely for the limiting elliptic power-
law material.

_ _ _  _ _
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such that (2. 19) hold. Once p(F, 8) and cp(i , 8) are known, the desired

solution for ~(3E1,3E2) in the physical domain follows from (2. 13) with

the aid of (2. 14), (2. 16), and (2. 3). In this manner, bearing (2. 18) in

mind, one arrives at

u(5E1,x2)— -pQ(p)coscp (0< 1<co, -rr�8<ir ) . (2.20)

Further , one can ver ify a posteriori that this algorithm indeed produce s

a solution of the boundary-value problem (2. 7), (2. 8), (2. 9) with the

requisite regularity properties. In the elliptic case considered so far ,

~i so determined has continuous partial derivative s of all orders on the

entire open region ~~~~. The stresses associated with ~ are obtainable

from ( 1.22), (1.23).

3. Elliptic and hyperbolic solutions of the displacement equation of

equilibrium for the special material.

Wtih a view toward explor in g the effect of a bre akdown of ellipticity

on the solution to the small-scale nonlinear crack problem, we turn now to

the spe cial “pilot material” introduced in (1.31), whose response to a

simple shear is governed by (1.32). When the ellipticity of the required

solution field is not guaranteed in advance, the ho dograph mapping (2. 10)

may not be one-to-one and (2. 19) need no longer be uniquely invertible.

As will be shown, however, even in these circumstances (2. 16) to (2. 20)

may be used to generate solutions of the partial differential equation (2. 7)

on cer tain subdomains of ~~~~~. The se solution s, in turn , may be combined to

construct a solution of restricted smoothness to the global boundary -value

problem at hand.

The particular choice of the pilot material determined by the

-I 

• --  — -~~~-•~~~~~- __
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simple-shear response (1.32) was motivated in part by the fact that the

integral in (2. 17) may be evaluated explicitly for this special incompressible

elastic solid. Indeed, (1.32), (2. 17),(2. 18) give

P(p)=— 1~~+~~ (O< p� l ) , P(p)=-~- (1�p<co)
2p

(O<p�1) , Q(p)=-1-- (1�p<w)
p

Equations (2. 19) may be rewritten as

5E 1=1 co s 8 = a ( p ) - b ( p ) cos2cp

~.(3.2)

~2=~~sin8=-b(p)sin 2cp (0<p<co , 0�cp� -rr)

with

a(p)=P(p)-~~Q(p) , b ( p ) = - ~Q(p) . (3.3)

Thus , re gardless of the specifi c choice of the mate rial , the point s (i~1, 3E2 )

in the physical plane that correspond to a constant positive value of p

comprise the circle

F (p)  : [5~1- a(p)] 2+~~~ = b 2(p)  , (3.4)

which is centered at (a(p), 0) and has b(p) as its radius.

Returning to the pilot material and confining our attention to

O < p < l  fo r the time being,we note that (3.1) to (3.4) yield a ( p ) = 3 / 2 ,
2b(p) 1/2p and

- • ~~~~~-•-—~~~~~~~~~~~~-— •  ~~~~~~~~~~ —•~~
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~,
_ j = - --~-~~co s 2cp , x2= - --~~~sin 2cp ( 0 < p < l , O� cp �-Tr ) ,

• .(3.5)

F (p )  : (
~~~ .~.)2+.~2= _•!•_ ( 0 < p < l )

• 4p

Consequently, if (i~~, 9 ,) are polar coordinates at 5E 1= 3/2 , 3E2 = 0

(see Figure 5(a)) , so that

— — 3 —x, rcos 9~~~ +r 1 cos 9,
(3. 6)

~ 2= f s i n 9 = F 1 sin 8 1 (0�? 1<w , -n �8 1< n )

one has from (3. 5),

p = ( 2~ 1) ’”2 
, c p = -~ (e~ +ir ) . (3 .7)

Further , (3.1) ,  (3.7),  (2.20)  and O<p<l now give

1/2
~ =e (~ 1,5E2)=(2i~1) sin -~— on e , (3.8)

where e is the subdoinain of ~ defined by

e=[i ,o ) I-~<i ,<co, - 1T<8 1<1r) (3. 9)

and indicated in Figure 5(a) . As p -.1 in the last of (3. 5), F(p)  tends

to the circle

or ~~~~~ -Tr� 8 ,<n . (3.10)

• The boundary of e thus consists of C and the half-line -co<~~1< 1

x2—0.

Since the partial differential equation (2. 7) reduces to Laplace’s

I

~~~~~~~~ ~~ : . .  
~~~~~~~~~~~~ .~
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equation for the pilot material in case p< 1, the displacement (3.8)

evidently satisfies the appropriate specialized version of (2. 7) on e.

Moreover , from ( 3 . 8 ) , ( 3 . 9 )  follows

on e , (3.11 )

whence the solution (3.8) is elliptic thro ughout the open region e.

Clearly, ~Ve 1 as a point on C is approached. It is essential to

observe that the elliptic solution e is discontinuous across the Jj- axi s

1 , iE~ = 0, r athe r than merely across the semi-infinite crack

-co <~~,<0 , 5E2=0. In fact , as is apparent from (2 .6 ) ,  (2. 1) and the

remarks following (2. 1), the solution unde r discussion coincide s with

the near field of the out-of-plane displacement for a Neo-Hooke an material

and a crack 
~Jp situated at i~~= 0 , rather than at the origin r = 0.

We proceed now to the case p > l . In thi s instance (3 .1 )  to (3 .4)

furnish a ( p ) = 3 / 2 ~J~ , b ( p ) =  1/2,j ~

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,

~,~~Fsin 9 - —-~~~sin 2cp ( l < p < ~o, 0 � c p �n~) , (3 .12)
2.~, p

F (p)  ~~~~~~~~~~~~~~~~~ (1<p<w) .

Upon referring the last of (3. 12) to the polar coordinates (1~, 9) and

solving the resulting quadratic equation in .JF , one is led to

J~ = .L[3cos9±R (9)] , (3 . 1 3 )

Zr

, .
.

~~~~~~

•
. 

~~~ 
:b~~~~~~~~~~~~~~~~~~ 

~~~~

-

~ 

• - -~~~•- ~~~~~~ ~~~~~- — •~~~~--— • -~~~~~~~~~~~~~~~~~~~~~~~~ - •
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provided

R ( 9 ) = J 9 cos 2
9~~8 . (3 . 14)

On the other hand, (3. 13), (3. 14) and the first two of (3. 12), afte r some

algebraic manipulations , are found to imply

- -ZJ~~sin 8
C O s c p - 2 112

[ 1 +3 s in  9± R ( 9 ) c o s9 ]
• (3 .15)

cos9±R (9)sin cp = 2 1/2
.f l [ l+ 3  sin 9± R ( 9 ) cos 9]

Clearly, both value s of .J~ supplied by (3. 13) are real and positive

if and only if

I c o s e I � .J~7~ or -9
~
� 9� 9

~ 
, 80=co s 1(.J~ /3) . (3 . 16)

Further, since p> 1 at present, (3. 13) demands that

3 cos9±R (9)>2~ . (3.17)

Now let W and ~I be the two subdomains of ~ defined by

~~= [~~, e ) I 0 < T < ~ [3 c o s e + R ( e ) ]  , O�~~9I<8~) 1

~( = [ ( ~ , e) l 0 <~~<4 [ 3 c o s 9 - R( e ) ]  , o < ( e k e ~) 
J

• which are shown in Figure 5(b) and Figure 5(c), respe ctively, and which

evidently conform to (3. 16), as well as to the inequality (3. 17) with the

‘The reason for excluding points on the ray 0 0 from W will emerge
pre sently.

,

, 
• .~~~~~~~~ ;Y •

______________________________________________________ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _  J
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appropriate sign alternative.

For the purpose of examining the geometry of the two open point sets
+
~( and W we note first that F(p) in the last of (3. 12), as p -.1. tends

+
to circle C given by (3. 10). Next, let C and C be the two complementary

circular ar cs of C defined by

+ 1 It

• • ~ (3.19)

é =C ~ ,,e ,)Ii1=~~, e 0+~~z I e 1I�It) , J
and observe on the basis of (3. 6), (3. 14), (3. 16) that these two arcs may

also be desc ribed by

~~=[~~,9 )~7=~~[ 3 c o s 8 + R( 8 ) ]  , 0� le ke~
) 1

(3. 20)

C= [~~ , 0 ) I ~~=~~[ 3c o s 9 - R ( 8) ]  , 0 � le I< e ~1 . J
• +

It is clear from (3. 18), (3. 20) that the boundary of W consists of the two
+

ray-segments o �i�f ~, 9 = ± 9 ~ together with the circular arc C, as

indicated in Figure 5(b); in contrast, the boundary of ~i 
— displayed in

Figure 5(c) — is now seen to be composed of the same two ray-segments,

the circular arc C, as well as the segment 0� 1�1, 8 0  of the

~~ ,
- axis.

Recalling from (3. 1) that Q(p) = 1/2.J~ when p> 1 and substituting

from (3. 13) and the first of (3. 15) into (2.20), we arrive at the two out-

of- plane displacement fields: 

. — - --- --

• • 
~~~~~~~~~~~~~~~ 

• ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~
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~~ ) =  [ 3co s 8 +R ( 9 ) ] 3”2 s i nO  
~~1 2

.(3.Z1)

r i3/2
• . ~ = i ~5~1, 3E ) L 3 c 0 s 8 - R ( 8 ) J  

1/2 on2 .J~~ [cose-R (e)]
+

with R(e) given by (3. 14). Both h and h are real-valued functions that

have continuous partial derivatives of all orders on their respe ctive domains

of definition; furthe r , each satisfies the disp lacement-equation of equili-

brium (2 . 7), spe cialized for the pilot mate rial and p> 1, as is re adily

verified by substitution. Also , a direct computation confirms — in agree-

ment with (2 . 15) arid (3. 1 3 ) —  that

on

.(3.22)

l~~l i~ii =— ~~[3cos9-R (9)]
2>1 on , 

-

+
so that h and h are both hyperbolic solutions throughout the open sets
+ - _.+

~1i and V. respe ctively. From (3.22)  and (3 . 20) one infers that I V h I _ 1
+ +as a point on the boundary-segment C of V is approached; similarly,

I~h l -.1 at every point of the circular arc C.

Finally, (3. 14) and the second of (3. 21) reveal that

h(5E1, 0± ) = ± ~~— (0<~~,<1) . (3.23 )x1

Consequently, the second of the foregoing two hyperbolic solutions has a

finite jump discontinuity across the segment 0<ic 1< 1 of the 3E 1-axis.

6

• •— -- -—- - —-—---— • _•_L

,.
• • •

•
~• . . •
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4. Construction of a solution to the small-scale nonlinear crack problem

for the pilot material.

In this section we attempt to piece togethe r the solutions of the

• partial differential equation (2. 7) established in Section 3 in orde r to con-

struct a solution — continuous and pie cewise smooth on — of the small-

scale nonlinear crack problem (2 . 7), (2. 8), (2. 9) for the pilot material.

To this end we note first  that we have available only the elliptic
+• solution e on the complement of V ~ ith re spect to the cut plane ‘

~~~ and
+

only the hyperbolic solution h in the interior of the circle C (see Figure 5).

Further , as is easily seen from (3 .8) ,  (3.21)  and (3 .6) ,  (3. 14), both e
+ _+ +

and Ve join continuously with h and Vh across the circular arc C
+

separating the e lliptic domain ~ and the hyperbolic domain V. Thus e

+
and h supply a solution of the requisite smoothness to the differential

equation ( 2 . 7) at all point s of ‘

~~~ that lie outside the boundary of ~(.

+
Since h is the only one of the three solutions available on V that

is continuous across the segment 0<~E~ < 1 of the iE~ -axi s, it follows

that the solution to the boundary-value problem (2 . 7), (2 . 8), (2 . 9) we

are try ing to assemble must coincide with in the vicinity of this seg-
+

ment. On the other hand , the transition from h to e across the ray -

segments 0 �i �~/~~, 9 = ± 80 is readily found to involve a jump discontinuity

m u .

The foregoing considerations suggest that we dismiss h altogethe r
+

and seek to “match” h and e across two as yet undetermined curve s

I and I’ (Figure 6) that are symmetrically situated with respect to the

start at the origin, terminate at the points 1 = J2~, ~ = ± 8~~, and

otherwise lie wholly in V. This matching , moreover , must assure the

• ~~~~~~ — -. - • • - • — ~~~~ - •

• . ••

~

• • • • •

~

• _

~

._•

~ 
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continuity of U and of the traction across the two curve s to be found. As

will eme rge shortly , there exist unique “shocks ” (shock-lines) I and a’~

with the desire d properties; as eithe r of these lines is traversed U and its

tangential derivative remain continuous , while the normal derivative of

U suffers a finite jump discontinu ity — despite the prevailing traction con-

tinuity across a’ and I’.

The fin al solution of the small-scale y ielding problem thus obtaine d
+

• coincide s with the hyperbolic solution h on the finite domain whose

boundary is the closed curve composed of I , a”, and (see Figure 6);

it coincide s with the elliptic solution e on the domain e~ consisting of

all points of ~ exterior to the boundary of W~~. Since and

as F-’w , it is clear from (3. 8) that the composite solution just described

satisfies the conditions (2. 9) at infinity , in addition to the boundary con-

ditions (2 . 8), which are obviously met. While the solution here alluded to

clearly possesses the required (relaxed) smoothness on ~~~~~, we shall have

to show eventually that U so determined remains bounded as

We proceed now to the determination of the upper shock I , from

which aP ’ follows by symmetry. Since th e  hyperbolic solution h has been

discarded, we shall henceforth write h in place of i~. According to (3. 8)

and (3. 21), the two solutions of (2. 7) to be matched across the desired

curve I are :

1/2U= e(~ 1,~~2)=(ZF1) sin -y on e
• (4.l)

on

• - - • - -•--

• ;~~~
•
.~~~ ~~

• •
.

-
~~-• •

•
•

•
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where

f(e) ’ [3cos9+R(8)]~
’2sin~ , R ( 8 ) = ~I9cos 2 9 - 8  . (4.2)

[cos 9 + R ( 9 ) ]  /

The continuity of the displacement U across a~ therefore demands that

(2~F1)~~
’2 sin~.2i =~~~~l on I , (4.3)

in which and 8
~
, on account of (3.6), may be regarded as functions

of ~ and 8. We shall show that (4. 3) actually admits a unique solution

d:i~=~~(8) (0�e
~~8o) ,  ~(o) o,~ (e o)

~~ i1~ 
(4.4)

and that the emerging shock I meets all the conditions stated earlier.

With a view toward proving this claim, we temporarily take for

granted the existence of a solution (4.4) to (4.3) and infer, with the aid

o f ( 3.6) ,  that then necessarily

?6sin 2
e - 2~

3f 2(9)cos 9 + 3~
2f 2(e) - f4 (9)  0 . (4. 5)

Next , we introduce the auxiliary function

C C(8) 3cos
’
~~~R( 8) (0�e� 8~ ) (4.6)

and use (4. 2) to conclude , after lengthy elementary manipulations , that

(4. 5) may now be written as

• (C - ~~
)2{C

4
+ c3

~ ~c 2 
(4C +1) 

~~~~ 
= 0 . (4. 7)

[cos e+R(9)]

6
But (4.6) and (3. 20) imply that the first facto r in (4.7) vanishes if and only

• - • —

• -
~~•
. •

~•“~
.•

~~~ 
• •• • 1L• •~’• ~ ~~~~~~~ ~~~~~~~~~~~- 

~~~~ • ••3~ •~ •

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ • •~~~~~~~~~~ i•~~~ _ _
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if F= ~(9) and 9 are the polar coordinates of a point on the circular

arc and hence thi s facto r cannot vanish on I. The presence of the

root C = 1/2 of (4. 7) merely reflects the continuity of U across C

mentioned previously . It follows that the function within brace s in (4. 7)

must vanish on I , so that

4 3 3C + C + 7C . 2 -
\

.t 
— 

sin ~ = ~~lA ’ .  I
““ 4 ’+l  — 2~~~’~” 

I
[ c o s 9 + R ( 8 ) ]  I

~ (4 .8)
on •

The function * appearing in (4.8) is strictly increasing on [0 , 8o ], with

~~0) = 0 and 
~~~~ 

1/8, whereas the rational function ~ on the left

side of this equation is easily seen to increase steadily from ~(0) = 0

to ~ ( l/ 2) = 1/8 as C ranges ove r the interval [0 , 1/2]. Consequently,

for each given 9 in [0 , 80 1 there exists precisely one root C = C(e) of

(4. 8). If we now employ (4. 6) to define He) and reverse the steps that

led from (4.3) to (4. 8), we infe r the existence and uniqueness of the shock

• I described by (4.4).

Although (4. 8) has not been solved explicitly for C = C(8) , the

numerical calculation of ~ (9) (0�~~� 9~~) from (4.8), (4.6) pre sents no

difficulties. The results of this computation are plotted in Figure 6.

Further , equations (4. 8), (4. 6) enable one to extract the asymptotic

behavior of the sho ck I near its endpoints. One finds in this manner that

as 9-. 0 , ‘I
• ‘~‘~

as 8-. 8
~ J

* ~~~, .4
~~~~~~~ -~~~~~~~~~ • - - • - - -- - - - •~~~~~~~~~~~~~~~~~~ • - •~~
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A s is easily ve rif ied, (4.9) assure s that I is tangential to the

at the origin and tangential to the circle C at 1 = ~~ e e
~
.

• Our next objective is to establish the continuity of the tractions

across the shock I. In this connection we rely on (1.24), (1. 19), and

(2 .6)  to see that the only non-vanishing nominal traction component along

.~ is given by

s~~s3= 2 W ’(3 + ~ I 2
~~~ , (4. 10)

where U = e  on the elliptic side of I, while U = h  on the hyperbolic side .

Denoting the scalar t raction s on the two sides of I by 5e and

respectively, we draw from (4. 10) and (1.26),  (1.32) that

-3/2ae — øhVh . (4. 11)

Accordingly, the tractions are continuous across I if and only if

or {I ~ h[ 3
~
’2

~~h _ ~~ej ’.n=o on I , (4. 12)

provided ~ is a unit normal vector of I and the dot signifies scalar

multiplication. Keeping in mind that the displacement-continuity condition

(4. 3), which determined the shock I , asserts

h - e = 0  on I , (4. 13)

one has

V h - V en =  — — o n 1 . (4. 14)

The traction-continuity condition (4. 12) is the refore equivalent to

~
‘ 

~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~ ~i 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -•
~~~

•
~
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• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ on I . (4.15)

Aiming at a ve rification of (4. 15), we first record the polar corn-

ponents of ~h, which follow from the second of (4. 1):

~~~~~= - -~ f ( e )  
, ~ .~~ =-.1~?(e) . (4. 16) ’

• Similarly, the first  of (4. 1), in conjunction with (3.6) ,  enable s one to

arrive at

&e 1 / 
~1 1&e 1 1 (4. 17)

Equations (4. 16), (4. 17) reduce (4. 15) to

+ 
1~~2~~ ÷12 ( 9) 1 114

- 
1 {l+ ~~

3[f Z ( e ) + ? 2(e ) ] _ 3/4 }F (9)=o on I , (4. 18)
r

with

(4. 19)

Now, (3.6) and (4. 3) justify

r f 2(9)sin. 9, ~ 1/3 r f’e) in. 0 ~ 2/3
j  , = I ‘ j on 1. (4.20)L 2~~ Bsin 2 (0 1/2 )  1 L,J~~ain(O / 2 ) s j n O

‘He re and in what follows ~ stands for the derivative of f.
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Finally , substitution from (4. 20) into (4. 18) and subsequent use of the

definition (4. 2) of f( e) , after a lengthy computation, confirm that (4. 18)

is indeed satisfied. This complete s the verification of the traction-con-

tinuity requirement (4. 12).

We have yet to show that the solution U constructed in thi s section

remains bounded as F-.0. Acco r ding to the first  of (4. 1), the restriction

of e to the final elliptic domain &,~, (Figure 6) clearly meets this condition.

• It the refore suffice s to prove that the hyperbolic solution h is bounded on

the point-set Q consisting of all points (~ , ~) with F>0, 8�0 that belong

eithe r to or to a~ . Note that ~ is the closure of the upper half of

the final hyperbolic domain V~ , with the exception of the origin .
• . — . . . lSince I is tangential to the x ,-axi s at the origin , it follows that

every ray f rom this point to a point in Q intersects I precisely once ,

whence

i �i~(e) for all (F , 8) in Q . (4.21)

We recall next that C( 8) in (4.8) has the range [a , 1/2], so that

C(8) � 

~ cog e + R ( e )  ~~ e � (4. 22)

and (4. 6) yields the lower bound

~( 9) � /2  [ 3 c o s9 +R ~~)]5~~ 8 (O �8 � 8 ) (4.23)
[c o s 8+ R ( 8) ]  0

But (4. 2 1) and the second of (4. 1) give

‘Refe r to the first  of (4.9).

• - -~~~~
•
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on ~ , (4.24)

while thi s inequality, together with (4. 23) and (4. 2),leads to

hc~1, 5E2)�4 [ [ 3 c o s 8 + R ( 8 ) ] [ c o s 8 + R ( 8 ) ] 1 ’ �~J~ on . (4. 25)

This es tablishe s the required boundedness of b, and thus of U , as i - 0 .

In contrast , ~~ fails to remain bounded as the origin is approached

from within V~ , as is apparent from the first of (3. 22) , which give s

as ~~- 0+ . (4.26)

One shows easily that I~~UI -‘w as ~~-.0 along any regular arc lying in

or along I. In addition, it should be pointed out that (4. 1) furnishes

~~~1, 0±) ~~~ 1~ç (-co<5~ <0)  , UC~ 1, 0 ) 0  (0<~~1<co) , (4. 27)

which reveal a displacement discontinuity at the origin .

There is one further requirement that has been proposed for

elastostatic fields with discontinuous deformation gradients which has not

been mentioned so far in the pre sent paper. This condition insures the

dissipative character of the shocks inhe rent in such a fie ld and is an

analogue of the entropy inequality for gas-dynamical shocks.

The elastostatic inequality to which we are alluding was first

deduced in [5] with limitation to re ctilinear shocks in piecewise homogeneo us

plane defo rmations; it was late r extended to curve d shocks and general

non-homogeneous deformations in [6],  where the special form assumed by

this condition in the particular case of anti-plane shear was given separate

• ••• J• ‘ • •~•• •~
• • • i • •

4
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attention ’. A thermodynamic argument in support of the dissipation

condition for compressible elastic materials is produced at the end of [6].

The application to the solut ion f ield under conside ration of the

dissipation inequality referred to above is contingent upon a quasi-static

interpretation of this field , in which the amount of shear k applied at

infinity plays the role of “time” — or , more appropriately, of a history

parameter 2 . In thi s connection the corresponding velocity V(x , k) of

a point x on the instantaneous shock 1(k) relative to the undeformed

configuration is of importance3 .

In view of (4.4) and (2. 6), the physical position vec tor of a point

on 1(k) is given by

x =~~(e , k) = ck 2
~ ( 8)a( e)  

~°~~
8
~~

8o~ 
(4.28 )

if a( 8) is the radial unit base vecto r associated with the polar coordinate s

(r,9). Hence

V(x, k)~~~~~ c(8 , k ) = .~~è(e , k) (0 �e �e o) . 
• 
(4.29)

It follows from (4. 28), (4. 29) and propertie s of the function ~ es tablished

earlier that V(x, k) always points into the hyperbolic domain V~ , so that —

as k increases — material points of the body traverse the shock 1(k) from

the hyperbolic “upstream” to the elliptic “down stream ” side of 1(k). The

Section 6 of [6].
2 ,, ,,Thus as time k increases , the body undergoes loading, rathe r than
unloading.
3By virtue of the symmetry of the solution U at hand we may confine the
following consider ations to the uppe r shock.

• •
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relevant dissipation inequality ’ now take s the fo rm of the jump condition

[H]~ �0 on 1 , (4.30)

in which the function within brackets is defined by

H = _ W ( 3 + I V u l 2 ) + 2 W ’( 3 + t V u l
2

)(~~~) (4. 31) 2

and [H]~ stands for the difference between the limiting value of H on

the upstream (or positive ) side of 1 and its limiting value on the downstream

(or negative ) side . On account of (4. 31), (4. 10), (2 . 6), and the continuity

of the tractions across I, we arrive at

[H]~~~-[W]tf s [~~~] on I , W=W(3+ I~~~
2) . (4 ,32)

Recalling that U = h on the upstream side , while U= e on the

downstream side of 1, we now express the right-han d member in the first

of (4.32) in te rms of ~h and Ve. To this end we f i r s t  invoke (1 .31),

(1. 19), and (2.6), which give

~~~~~~~~~~~~~~~~~~~~~~~~~~~ (4.33)

whereas (4 .11) and the first of (4.12) enable us to write

~~~~~~~~~~~~~~~~~~~~~~~~~ . (4. 34)

Furthermore , anothe r appeal to (4. 11), (4. 12) yields

‘See (4. 19)and (6. 13) in [6].
2Here 8u/On = Vu’n and n is a unit normal vecto r of I.

—
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• V e .n =  I~h I 312
~h~~ . (4.35)

Using this result in (4. 34) and thereafter substituting from (4. 33), (4. 34)

into (4 .32 ) ,  we are finally led to

[H]~=~~{I~el 2+3- .4IVhI~~
2+ 

i~ ht~~~
2[ l~hl 3121

~ . (4.36)

We turn next to a verification of the dissipation inequality (4. 30)

at the endpoints of the shock 1. Since l~hI> 1 , (4.36) implie s that

[H]~� k~[I~el 2-2 I~hI ”2+3) on I . (4.37)

But acco rding to (3.11) and (3. 22), I~ e l  is bounded and IVhl-~cx as

i-.0. Consequently, (4.30) is cer tain to hold along I in a neighborhood

of the origin.

The confirmation of (4.30) ne ar the right endpoint of I, at ~
8 80 ,  unfortunately turns out to be a very cumbersome task, which

requires a considerable improvement of the second estimate in (4.9) .  The

requisite refinement of this asymptotic result is found to be

~(8) =J ~- 2~~”~ (8~
_ 8) 1/2+ ~(e~- 8) -  226 x2~~

3
~
’4(80- ~)3/2

+O C ( e o
_ 8) 21 as 8-~8~ , (4.38)

and calculations far too elaborate to be included he re eventually yield

[H]~~~-33 x 2 ”4(8 0- 8) 3”2 +O [(e 0- 8 ) 2 ) as 8
~~

8
~ 

. (4.39)

• . ~~~~
•
~~~~~~
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I
It is now evident that (4.30) also holds in a neighborhood of the right

endpoint of 1. Numerical calculations , which were carried out on the

basis of (4. 36), reveal that the dissipation inequality is in fact satisfied

at aU points of the shock.

In defining the pilot mate rial through (1.31) we assumed for con-

venience that the peak of the re sponse curve in simple shear (Figure 3)

is situated at k = 1. If this normalization is abandoned and the maximum

of T(k ) is permitted to occur instead at k = k 0 (k0 >0) , (1.32) give way to

T(k)~~ .ik (0 �k �k 0) , ¶ ( k ) = i ~.Lk 0(k/k 0)~~
”2 (k 0 �k< x~) , (4.40)

while (1.31) undergo an analogous modification in accordance with (1. 27) .

It is easily seen that in these circumstances the phy sical problem gove rned

by (1.1 8), (2 .4), (2.5) again reduce s to the dimensionless version (2.7) ,

(2. 8), (2 . 9) provided the scaling (2. 6) is rep laced by

~~ = k ~x /ck
2 
, ~~= k ~ r/ck2 

, U = k 0u/ck
2 

. (4.41)

Since the solution to the small-scale nonlinear crack problem

deduced here involves shocks , along which the displacement gradient s

suffer jump discontinuities, it is natural to wonder whether it is possible

to prove the non-existence of a smoothe r solution to this problem. We

have not been able to supply such a proof; nor have we dealth with ques tions

• related to the stability of the solution found.

5. Numerical results for the displacements and stresses. Generalizations

of the constitutive assumption. Discussion.

It is clear from (4. 1) and the subsequent analysis in Section 4 that

• • • • • • • 
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the displacement field of the solution to the pilot problem deduced there

is supplied by

on e~ , U =~~~1 on V~ , (5.1)

whe re f(8) is given by (4. 2). Here e~. and V.. are the final elliptic

and hyperbolic domains defined in Section 4 and depicted in Figure 6.

Equations (5. 1) together with the relations (3.6) between the two pairs of

polar coordinates (F1, e~ ) and (7, 8) may be used to calculate 11fF , 8).

Figure 7 shows curve s displaying the angular dependence of 11(7, 8) for

four fixed values of 7. Note that the kink in the curve s corresponding to

F~ 1/4 and 7= J2 / 2  is due to the shock. Since the circle s 7= 7 / 4  and

= 9/4 do not intersect the shock, the remaining two curve s in Figure 7

are free of any discontinuity in slope .

From (5.1)  follows

.J~ for 0 < 8 �r r

limU(F, 9 ) = - .~ 0 for 8 = 0  (5. 2)
7-40

~~~~ for -n � 9< 0

which accounts for the dashe d line in Figure 7. Thus , in firs t approximation ,

the material above and below the crack , near it s tip, t ranslates r igidly

in opposite directions (par allel to the plane of the crack) . The displacement

discontinuity at the crack tip inherent in (5. 2) was mentioned earlier in

conne ction with (4. 27).
I’

We proceed now to the determination and discussion of the st resses

associated with the solution under conside r ation. In view of (1. 19), (1 .22),

$ (1. 23), the non-trivial components of the prevailing actual stress field ,

•~~~~~~~~~~~~ - • -~~ •— ——-~~~ -~~~~
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referred to the cylindrical coordin ate s (r , 8, z)~~(r , 8,x3), are:

T rz =2W ’ i )
~~~~ 

T 8z =2W ’~ l~~~~~~, T =2 W ’( 11) 1V u 1 2 
1

11= 3 + I V u I
2 j

where W is the elastic potential of the pilot material defined in (1.31).

A dire ct computation rely ing on the scaling (2 . 6), the dimensionless

displacements (5. 1), and involving the polar-coordinate relations (3. 6),

ultimately yields the results:

• 
T rz~~~~~~~sin(8~~~~~),  ¶

8z~~~~~~~c05( 8 -~~~ ) 1
(5 .4)

~~~~~ , J
which — together with (3. 6) — determine the cylindrical components of

the Cauchy stress tensor on the elliptic domain as functions of i

and 8 alone; similarly,

¶
rz

_
~7f(8 f 2(8) + ? 2 (8 3’4 

‘ 

I
¶

eZ~~~~~(8)(12(8)~~~
2 ( 8) 1 3/4 

~ (5 5)

on W~ J
with f(8) furnished by (4. 2).

Figures 8, 9, 10 contain graphs depicting the dependence of the stresses

_ _ _ _  • •
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T rz ’ ‘8z ’ ~~~ 
upon the polar angle 8 for the same four fixed value s

of 7 employed in Figure 7, except that the results for 7= 9/ 4  were

omitted in Figure 10 in order to avoid an excessively crowded diagram.

The curve s appropriate to 7= 1/4 and 7= ./~/2 in the figure s under

discussion display finite jump discontinuitie s at values of 8 that are

angular polar coordinate s of the point of intersection of the corresponding

circle 7= constant with the shock. In contrast , the graphs based on

7= 7/4 reve al me rely a discontinuity in slope at the value of 8 that

• corre sponds to the intersection between the circle s C and 7= 7/4.

At thi s point of intersection lviii = 1 and the singular behavior just men-

tioned can be traced to the kink in the shear-response curve (Figure 3)

at k =  1. Thi s kink is also re sponsible for a discontinuity in the curvature

of the displa~~ ment curve for 7= 7/4 in Figure 7 at the particular value

of 8 referred to above . Finally, the curve s associated with 7= 9 /4

in Figure s 8, 9 are entirely smooth since this circle lie s wholly in the

domain of ellipticity of the solution.

If the maxj tnuxn of T(lc) occurs at an amount of shear k0,  so that

(4. 40) hold and the scaling (4. 41) is in force , the graphs in Figure s 8, 9

rep resent ¶
rz /JJ k0~ and T 8~~/I.Lko while those in Figure 10 become

2plot s of

Equations (5. 4), (5. 5) imply that the shear stresses T rz ? ‘8z
remain bounded as 7~~0 and tend to zero as the crack-tip is approached

from within the hyperbolic domain W~ . This conclusion is consistent

with (4.26) and the fact that ‘r(k) -.O as k-.a in a simp le shear defo r-

mation of the special material unde r conside r ation. On the other hand,

$
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the axial normal stress 
~~~ 

though bounded in any elliptic neighborhood

of the origin 7 = 0, becomes unbounded as 7~~0 from within ~~ . This

singular behavior of was to be anticipated in view of the last of (1.26),

according to which the normal stress ¶
33 induced by a simple shear

remains finite as the amount of shear k grows beyond bounds only if
1/2kT( k) tends to a finite value as k-.~~ , whereas k T (k) — ~~k in thi s

limit for the pilot material’. The pre ceding remark sugge sts that the

singularity of at the crack-tip would not arise if the second of the re-

lations (1.32) defining the material were suitably modified. Unfortunately,

this objective is incompatible with the hodograph scheme we have used to

deduce the solution to the problem at hand since the improper integral in

(2 . 17) is no longer convergent when k i(k) = 0(1) as k~~a .

Keeping in mind that ivu  < 1 on e~ and Ivu I > 1 on W ,~, one

easily infers from (1. 19), (1.23),  and (1.31) that

W = ’T on e~ , W = 2 T  -~~~~~~~~ on V.. . (5.6 )2 z z  zz 2

The behavior of the strain-energy density associated with the solution

being discussed is therefore immediate from that of the axial stress ~zz
hi part icular , W remains bounded at the crack-tip except when the latte r

is approached from within

An analy sis strictly parallel to that summarized in the foregoing

sections leads to a solution of the analogous small-scale nonlinear crack

problem for an incompressible elastic material (of the type characterized

by (1. 13)) whose response in simple shear obeys

$ 
‘See the second of (1 .32).
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¶ ( k) =Mk (0 � k� 1) , r (k)  =~~k~~ ( 1� k<co ) , (5.7)

in which ~ is a material constant restricted by

O �~ r ( l  . (5 .8) 1

The constitutive relation (5 .7)  is evidently a generalization of (1.32) and

reduces to (1.32)  for ~~= 1/2 . The special case Q = O  corresponds to a

shear response in which the shear stress ¶(k) rises line arly to a value

~.j at k = 1, and remains constant at this value as k increases from unity.

For materials governed by (5. 7), (5. 8), the differential equation

(1. 18) again suffers a loss of ellipticity at a solution u and at a point

(x 1,x2), provide d iVu(x 1, x2 ) i > 1.

On applying the hodograph scheme to the small-scale nonlinear

crack problem for a material with the shear response (5. 7), (5. 8), one is

once again led to elliptic and hyperbolic solutions of (1. 18) on certain

subdomains of ~~~~~. In fact , Figure 5 remains applicable in the present

circumstance s, provided the circle C is replaced by one of radius 1/2

centered at 
~~ ~ (l + ~)/ ( 1 - o~) , ~~~ 

0 , while the angle 80 is now

determined by sin 8o= (1-  o)/ (1  + or) . Further , the formulas (3 .8) and

(3. 21) for the elliptic and the two hyperbolic solutions at pre sent undergo

modifications which will not be spelled out explicitly . As in the special

case ~ = 1/2, the elliptic solution can be matched to the appropriate

hyperbolic solution across two symmetrically situated shocks, if

0 < c ~< 1. Thus Figure 6 , which illustrate s the elliptic and hyperbolic

domains of the final solution for ~ = 1/2 , has a qualitatively similar

‘The re striction ~< 1 assure s the conver gence of the integrals in (2 . 17).
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counterpart for eve ry value of ~ in the ~pen interval (0 , 1).

The particular case ~ = 0 , which is clearly a limiting case of

non-elliptic behavior , require s separate comment. In this instance the

circle C is cente red at 1/2 , 
~~~~~ 

0 and thus passes through the

origin. When ~ = 0, it turns out , the elliptic solution — analogous to e
+

of (3.8) — can be joined to the non-elliptic solution corresponding to h

in (3. 2 1) across the entire circle C in such a way that both 11 and its

first partial derivative s remain continuous. Hence the final solution thus

obtained is free of shocks . It should be mentioned that the finite-crack

problem (1. 18) to (1.21) for a material obeying (5.7)  with ~ = 0 is closely

related to a notch-problem for an elastic-pe rfectly plastic body in anti-

plane shear , solved by Hult and McClintock [7], who also employed the

hodograph method, In fact , for a notch of zero opening ang le (cr ack) and

a suffi ciently small loading at infinity, the elastic-plastic interface

established in [7] — when referred to the scaling (2. 6) — passes ove r into

the circle C that separate s the elliptic from the non-elliptic domain in

the small-scale nonlinear crack problem corresponding to c~ = 0 in (5. 7).

An additional observation pertaining to the spe cial choice of ~ = 0

concern s the solution deduced in [2 1 to the small-scale crack problem

for the limiting elliptic case n =  1/2 (see Figure 2) of a power-law

material, gove rned by (1.30).  For such a mate rial ’.

1See (6. 52) in (z]  and refe r to the scaling (2. 6) in the present paper.

• • • 
‘
~~~
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(-IT �8<- 1r/2)

limti(F, 8 ) = - ~ i sin 9 / r ~ , (- 1T / Z �8 �ir / 2 )  (5.9)

(ir / 2�8 �ir )

where ~~~~~~ is the ultimate shear stress. One finds precisely the

same result for a simple-shear response (5 .7) with ~ =0 , provided ~~
in (5. 9) is taken to be i t ,  as is appropriate . This agreement refle cts

the fact that the behavior of the solution at the crack-tip (as r-.0) in

both the limiting elliptic case of a power-law material and the limiting

non-elliptic case corresponding to ~ = 0 in (5. 7) depends merely on the

ultimate shear stress in simple shear.

An alternative modification of (1.32) which is of interest consists in

requiring that T(k) decline to a positive value ¶~~ — rather than to zero ,

as in Figure 3. In this event the final solution again involves shocks , but

these are no longe r tangential to the ~ 1-axi s at the crack-tip: instead,

the two shocks are now found to subtend a positive angle , which depends

on the ratio

Another study of crack problems in which the appropriate differential

equations of equilibrium are not elliptic is that included in the paper of

Hutchinson [8], who investigates the perfectly plastic stress field near

the tip of a crack in a thin sheet subject to tension at right angles to the

crack. A stress discontinuity arises in the re sults of the analysis in [8].

In conclusion we remark that the hodograph scheme used in this

investigation is no longe r available in connection with the physically more

important small-scale nonlinear crack problem associated with a crack

in a tension field under condition s of plane strain and for a material
$

I

- • • _ • • • •—  • •
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capable of sustaining a loss of ellipticity . In preparation for an attack

on this much more difficult fourth-orde r problem, it would be instructive

to find an alternative approach to the crack problem treated here that doe s

not rely on the hodograph method.

• 
‘
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FIGURE 5. PILOT MATERIAL: ELLIPTIC AND HYPERBOLIC SOLUTIONS
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